Newton’s Method for Symmetric Quartic Polynomials
نویسندگان
چکیده
We investigate the parameter plane of the Newton’s method applied to the family of quartic polynomials pa,b(z) = z 4 +az + bz +az+ 1, where a and b are real parameters. We divide the parameter plane (a, b) ∈ R into twelve open and connected regions where p, p′ and p′′ have simple roots. In each of these regions we focus on the study of the Newton’s operator acting on the Riemann sphere.
منابع مشابه
Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials
In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...
متن کاملBuckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملPartition functions and symmetric polynomials
We find a close correspondence between certain partition functions of ideal quantum gases and certain symmetric polynomials. Due to this correspondence it can be shown that a number of thermodynamic identities which have recently been considered are essentially of combinatorical origin and known for a long time as theorems on symmetric polynomials. For example, a recurrence relation for partiti...
متن کاملA Part–metric Variant of Newton’s Inequalities
This note gives a part-metric variant of Newton’s inequalities. A particular case proved useful recently in the study of difference equations involving ratios of elementary symmetric polynomials. Mathematics subject classification (2010): 26D20, 26C05.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016